Choosing an Atlas#

The GBIF network consists of a series of ‘node’ organisations who collate biodiversity data from their own countries, with GBIF acting as an umbrella organisation to store data from all nodes. Several nodes have their own APIs, often built from the ‘living atlas’ codebase developed by the ALA.

At present, galah supports the following functions and atlases:

  • Australia

  • Austria

  • Brazil

  • France

  • GBIF

  • Guatemala

  • Spain

  • Sweden

Set Organisation#

Set which atlas you want to use by changing the atlas argument in galah.galah_config(). The atlas argument can accept a a region to select a given atlas, all of which are available via galah.show_all(atlases=True). Once a value is provided, it will automatically update galah’s server configuration to your selected atlas. The default atlas is Australia.

If you intend to download records, you may need to register a user profile with the relevant atlas first.

>>> import galah
>>> galah.galah_config(atlas="Spain", email="your-email-here")

Look up Information#

You can use the same look-up functions to find useful information about the Atlas you have set. Available information may vary for each Living Atlas.

>>> galah.galah_config(atlas="Australia")
>>> galah.show_all(datasets=True)
                                                                                                                                                                      name                                                     uri      uid
0                                                                                          ALA Taxonomy List for Species Missing from Conservation Lists part B 27_11_2023  https://collections.ala.org.au/ws/dataResource/dr23929  dr23929
1                                                                                                                                                           "A" Flora EPBC  https://collections.ala.org.au/ws/dataResource/dr24170  dr24170
2                                                                                                                                                      "H to O" flora EPBC  https://collections.ala.org.au/ws/dataResource/dr24172  dr24172
3                                                                                                                                                      "P to Z" flora EPBC  https://collections.ala.org.au/ws/dataResource/dr24173  dr24173
4      (Appendix 2) Stratigraphic distribution of key and potential stratigraphic calcareous nannofossil markers in the upper Campanian–Maastrichtian of ODP Hole 122-762C  https://collections.ala.org.au/ws/dataResource/dr30595  dr30595
...                                                                                                                                                                    ...                                                     ...      ...
10663                                    Zooplankton samples from Heron net trawls along the 110E meridian, eastern Indian Ocean, RV Investigator voyage IN2019_V03 (2019)  https://collections.ala.org.au/ws/dataResource/dr23120  dr23120
10664                                                                          Zooplankton sampling in the coastal waters of south eastern Tasmania, Australia (2009-2015)  https://collections.ala.org.au/ws/dataResource/dr15943  dr15943
10665                                                                                                                                           Zoos Victoria Moth Tracker  https://collections.ala.org.au/ws/dataResource/dr22371  dr22371
10666                                                                                                                                              Zosteria fulvipubescens  https://collections.ala.org.au/ws/dataResource/dr27880  dr27880
10667                                                                                                                                              Zosteria fulvipubescens  https://collections.ala.org.au/ws/dataResource/dr27881  dr27881

[10668 rows x 3 columns]
>>> galah.show_all(fields=True)
                       id                                       description   type link
0          abcdTypeStatus                     ABCD field in use by herbaria  field  NaN
1       acceptedNameUsage    http://rs.tdwg.org/dwc/terms/acceptedNameUsage  field  NaN
2     acceptedNameUsageID  http://rs.tdwg.org/dwc/terms/acceptedNameUsageID  field  NaN
3            accessRights                                               NaN  field  NaN
4          annotationsDoi                                               NaN  field  NaN
...                   ...                                               ...    ...  ...
1098    multimediaLicence                                Media filter field  media     
1099               images                                Media filter field  media     
1100               videos                                Media filter field  media     
1101               sounds                                Media filter field  media     
1102                  qid                  Reference to pre-generated query  other     

[1103 rows x 4 columns]
>>> galah.search_all(datasets="year")
                                                                                                                                                                                                             name                                                     uri      uid
0                                                                                                                                                                                  Elgin Road 3 year observations    https://collections.ala.org.au/ws/dataResource/dr661    dr661
1                                                                                                                                                                                com plants greater than 50 years  https://collections.ala.org.au/ws/dataResource/dr21699  dr21699
2                                                                                                                                                                    CoM animal species greater than 50 years.csv  https://collections.ala.org.au/ws/dataResource/dr21448  dr21448
3                                                                                                                              10 year trend of levels of organochlorine pollutants in Antarctic seabirds 2003/04  https://collections.ala.org.au/ws/dataResource/dr16247  dr16247
4                                                                                   Ocean Sampling Day (OSD) 2014: AUTHORITY-RAW amplicon and metagenome sequencing study from the June solstice in the year 2014  https://collections.ala.org.au/ws/dataResource/dr30174  dr30174
5                                                                             Coccolithophore assemblages of a 9,000 year old marine sediment core from a climate hotspot in Tasmania, southeast Australia (2018)  https://collections.ala.org.au/ws/dataResource/dr23184  dr23184
6                                                                          Year-round at-sea movements of fairy prions (Pachyptila turtur)  from Kanowna Island, Bass Strait, south-eastern Australia (2017-2020)  https://collections.ala.org.au/ws/dataResource/dr23233  dr23233
7  Jellyfish Database Initiative: Global records on gelatinous zooplankton for the past 200 years, collected from global sources and literature, subset of records from Australian and adjacent seas. (1907-2011)  https://collections.ala.org.au/ws/dataResource/dr29550  dr29550
>>> galah.search_taxa(taxa="Heleioporus")
  scientificName scientificNameAuthorship                                                             taxonConceptID   rank   kingdom    phylum  order           family        genus   issues
0    Heleioporus               Gray, 1841  https://biodiversity.org.au/afd/taxa/b63103c4-28f7-44a5-b8d7-df459eeff2d3  genus  Animalia  Chordata  Anura  Limnodynastidae  Heleioporus  noIssue

Download data#

You can build queries as you normally would in galah. For taxonomic queries, use galah.search_taxa() to make sure your searches are returning the correct taxonomic data.

>>> galah.galah_config(atlas="Australia")
>>> # Returns no data due to misspelling
>>> galah.search_taxa(taxa="vlps")
Empty DataFrame
Columns: []
Index: []
>>> # Returns data
>>> galah.search_taxa(taxa="Vulpes vulpes")
  scientificName scientificNameAuthorship                                                             taxonConceptID     rank   kingdom    phylum      order   family   genus        species vernacularName   issues
0  Vulpes vulpes           Linnaeus, 1758  https://biodiversity.org.au/afd/taxa/2869ce8a-8212-46c2-8327-dfb7fabb8296  species  Animalia  Chordata  Carnivora  Canidae  Vulpes  Vulpes vulpes            Fox  noIssue
>>> galah.atlas_counts(taxa="Vulpes vulpes", filters="year>2010")
   totalRecords
0        108555

Download species occurrence records from other atlases with galah.atlas_occurrences()

>>> galah.atlas_occurrences(taxa="Vulpes vulpes", filters="year>2010", fields=["taxon_name", "year"])
              scientificName  year  BASIS_OF_RECORD_INVALID  CONTINENT_COORDINATE_MISMATCH  COORDINATE_ROUNDED  COORDINATE_UNCERTAINTY_METERS_INVALID  COUNTRY_COORDINATE_MISMATCH  COUNTRY_DERIVED_FROM_COORDINATES  FIRST_OF_MONTH  FIRST_OF_YEAR  GEODETIC_DATUM_ASSUMED_WGS84  ID_PRE_OCCURRENCE  INDIVIDUAL_COUNT_INVALID  LOCATION_NOT_SUPPLIED  MISSING_GEODETICDATUM  MISSING_GEOREFERENCEDBY  MISSING_GEOREFERENCEPROTOCOL  MISSING_GEOREFERENCESOURCES  MISSING_GEOREFERENCEVERIFICATIONSTATUS  MISSING_GEOREFERENCE_DATE  MISSING_TAXONRANK  MODIFIED_DATE_INVALID  MULTIMEDIA_DATE_INVALID  OCCURRENCE_STATUS_INFERRED_FROM_INDIVIDUAL_COUNT  RECORDED_DATE_INVALID  STATE_COORDINATE_MISMATCH  TAXON_MATCH_FUZZY  TAXON_MATCH_HIGHERRANK  UNCERTAINTY_IN_PRECISION
0              Vulpes vulpes  2014                    False                          False                True                                  False                        False                             False           False          False                         False              False                     False                  False                  False                     True                         False                         True                                    True                       True              False                  False                    False                                             False                  False                      False              False                   False                     False
1              Vulpes vulpes  2011                    False                          False                True                                  False                        False                             False           False          False                         False              False                     False                  False                  False                     True                          True                         True                                    True                       True              False                  False                    False                                             False                  False                      False              False                   False                     False
2              Vulpes vulpes  2013                    False                          False                True                                  False                        False                             False           False          False                         False              False                     False                  False                  False                     True                         False                         True                                    True                       True              False                  False                    False                                             False                  False                      False              False                   False                     False
3              Vulpes vulpes  2016                     True                          False                True                                   True                        False                              True           False          False                          True              False                     False                  False                   True                     True                          True                         True                                    True                       True               True                  False                    False                                             False                  False                      False              False                   False                     False
4              Vulpes vulpes  2023                    False                          False                True                                  False                        False                             False           False          False                         False              False                     False                  False                  False                     True                         False                         True                                    True                       True              False                  False                    False                                             False                  False                      False              False                   False                     False
...                      ...   ...                      ...                            ...                 ...                                    ...                          ...                               ...             ...            ...                           ...                ...                       ...                    ...                    ...                      ...                           ...                          ...                                     ...                        ...                ...                    ...                      ...                                               ...                    ...                        ...                ...                     ...                       ...
108550         Vulpes vulpes  2024                     True                          False               False                                   True                        False                              True           False          False                          True              False                     False                  False                   True                     True                          True                         True                                    True                       True               True                  False                    False                                             False                  False                      False              False                   False                     False
108551         Vulpes vulpes  2017                    False                          False                True                                  False                        False                             False           False          False                         False              False                      True                  False                  False                     True                         False                         True                                    True                       True              False                  False                    False                                             False                  False                      False              False                   False                     False
108552  Vulpes vulpes vulpes  2018                    False                          False               False                                   True                        False                              True           False          False                          True              False                      True                  False                   True                     True                          True                         True                                    True                       True               True                  False                    False                                             False                  False                      False              False                   False                     False
108553  Vulpes vulpes vulpes  2019                    False                          False               False                                  False                        False                             False           False          False                         False              False                     False                  False                  False                     True                         False                         True                                    True                       True              False                  False                    False                                             False                  False                      False              False                   False                     False
108554  Vulpes vulpes vulpes  2019                    False                          False                True                                   True                        False                              True           False          False                          True              False                     False                  False                   True                     True                          True                         True                                    True                       True               True                  False                    False                                             False                  False                      False              False                   False                     False

[108555 rows x 29 columns]

Complex queries with multiple Atlases#

It is also possible to create more complex queries that return data from multiple Living Atlases. As an example, setting atlases within a loop with galah_config() allows us to return the total number of species records in each Living Atlas in one table.

>>> import galah
>>> import pandas as pd
>>> atlases = ["Australia","Austria","Brazil","France","GBIF","Spain"]
>>> counts_dict = {"Atlas": [], "Total Records": []}
>>> for atlas in atlases:
>>>     galah.galah_config(atlas=atlas)
>>>     counts_dict["Atlas"].append(atlas)
>>>     counts_dict["Total Records"].append(galah.atlas_counts()["totalRecords"][0])
>>> pd.DataFrame(counts_dict)
            Atlas  Total Records
0       Australia      150349915
1         Austria        9173597
2          Brazil       38014118
3          France      160752880
4            GBIF     3148536544
5        Portugal       16043865
6           Spain       59801061
7          Sweden      161214879
8  United Kingdom      300039245